

Response of terrestrial aridity to global warming

Qiang Fu

Department of Atmospheric Sciences

University of Washington

• Potential evapotranspiration (*PET*): The maximum amount of water capable of being lost from the surface for given atmospheric condition with well supplied surface water (i.e., the evaporative demand of the atmosphere).

• Aridity index (UNEP 1992):

$$AI = P/PET$$

e.g., at Tucson, USA P/PET = 0.12 Drylands are regions with P/PET < 0.65, which are further divided into (UNEP 1992; Hulme 1992):

• Hyper-arid: *P/PET* < 0.05

• Arid: 0.05 < P/PET < 0.20

• Semid-arid: 0.20 < *P/PET* < 0.50

• Dry subhumid: 0.50 < *P/PET* < 0.65

Distribution of World's Drylands

How does terrestrial aridity in terms of P/PET respond to anthropogenic climate change?

A view of dryland (with village in the background) in the Sahel, southern Niger

Previous studies focus on change in precipitation, as typical in high-profile reports (e.g., IPCC 2007, 2014), which may not tell the whole story — or perhaps even the main story — of hydrological change.

 Most studies of terrestrial dryness focus on droughts (e.g., Dai 2013), rather than on the background aridity changes.

- Drought region versus arid region
 - Anomaly (extreme) versus mean state (background climatology)

- Introduction
- A drier terrestrial climate
 - Global dryland expansion
- Past, present, and future
- Conclusions

A drier terrestrial climate

- Observational data for 1948-2010
 - T and P: CPC and UD
 - R, RH and u: GLDAS and the 20th Century Reanalysis
- Model data for 1948-2100
 - 27 CMIP5 GCMs with historical forcings for 1948-2005 and RCPs 8.5 and 4.5 for 2006-2100
 - The simulated data were statistically downscaled to 0.5 degree resolution
- CMIP5 transient CO₂ 1%/yr increase experiments
 - 25 CMIP5 GCMs to doubling CO₂

PET algorithm

• The *PET* is based on the Penman-Monteith (PM) algorithm (Maidment 1993; Allen et al. 1998; Sheffield et al. 2012; Scheff & Frierson 2014):

$$PET = \frac{(R_n - G)\Delta(T_a) + \rho_a c_p e^*(T_a)(1 - RH)C_H \mid u \mid}{\Delta(T_a) + \gamma(1 + r_s C_H \mid u \mid)} / L_v$$

where R_n -G is the surface available energy, T_a temperature, RH relative humidity, and u wind; e^* is saturated water vapor pressure, $\Delta = de^*/dT$, C_H transfer coefficient (4.8×10⁻³), r_s bulk stomatal resistance under well-water conditions (70 s/m).

Global dryland distribution for 1961-1990 climatology

Global dryland distributions versus vegetation types from MODIS

Changes in (a) surface air temperature, (b) *PET*, (c) precipitation, and (d) *P/PET* (1961-1990 to 2071-2100) under scenario RCP85

Why do we expect a drier climate under global warming

 As the globe warms global average rainfall increases (e.g., Allen and Ingram, 2002).

The percentage change in PIPET can be written as

$$\Delta \left(\frac{P}{PET}\right) / \left(\frac{P}{PET}\right) \approx \frac{\Delta P}{P} - \frac{\Delta PET}{PET}$$

Noting a similar rate of percentage increase in P over land to that in E over ocean, we have

$$\Delta \left(\frac{P}{PET}\right) / \left(\frac{P}{PET}\right) \approx \left(\frac{\Delta E}{E}\right)_{Ocean} - \frac{\Delta PET}{PET}$$

The Penman-Monteith algorithm can be used to estimate the actual E over ocean by setting $r_s = 0$ and using a C_H of 1.5×10^{-3} (Richter and Xie 2008), i.e.,

$$E = \frac{(R_n - G)\Delta(T_a) + \rho_a c_p e^*(T_a)(1 - RH)C_H |u|}{\Delta(T_a) + \gamma} / L_v$$

Table. Comparison of annual mean evaporation (E) and its percentage change rate and surface stability ($T_a - T_s$) change rate over ocean estimated using the PM algorithm and those from the GCMs.

	E (mm)	Percentage change	Change rate in $T_a - T_s$
		rate in E (%/°C)	(°C/°C)
Penman-Monteith	1267 (90)	1.92 (0.39)	0.07 (0.03)
Directly from GCMs	1300 (62)	1.71 (0.40)	0.06 (0.02)

Since the PM algorithm can be applied to both PET over land and E over ocean, we can examine the change in P/PET in the framework of the PET by comparing its changes over land and ocean.

Both PET over land and E over ocean are a function of surface air temperature (T_a) , relative humidity (RH), wind speed (u), and available energy (R_n-G) .

Ingredient one: Land surface warms on average, about
 50% more than oceans (e.g., Manabe et al. 1992; Joshi et al. 2008)

Fu & Feng (2014)

Ingredient two: Reduced relative humidity near the surface over land but increased RH over ocean (e.g., Simmons et al. 2010; O'Gorman and Muller 2010; Sherwood and Fu 2014)

Fu & Feng (2014)

 The surface winds change little over both land and ocean.

Fu & Feng (2014)

Ingredient three: Part of increased net downward radiation is transported to deep ocean (e.g., Hansen et al. 2005; Johnson et al. 2011; Loeb et al. 2012)

Fu & Feng (2014)

Change of net radiative energy budget at the surface

Fu & Feng (2014)

Change of net radiative energy budget at the surface

Fu & Feng (2014)

 Ingredients that contribute to a drier terrestrial climate in a warming world

Fu and Feng (2014)

 Our scale analysis shows an averaged decrease of P/PET by ~3.4%/K over land

Changes in (a) *P/PET* and (b) *RH* (1980-1999 to 2080-2099) under scenario RCP85

Sherwood & Fu (2014)

Temporal variations of global dryland areas for (a) the total and individual components of (b) dry subhumid, (c) semiarid, (d) arid, and (e) hyper-arid regions.

Feng and Fu (2013)

Temporal variations of annual mean (a) surface air temperature, (b) precipitation, and (c) *PET*, averaged over land between 60°N and 60°S, and (d) total area of global drylands.

Feng and Fu (2013)

Changes in dryland coverage to drier types (1961-1990 to 2071-2100) under scenario RCP8.5

Conclusions (I)

- The climate over land will become drier in a warming world.
- The change in the evaporation over ocean is slower than the change in potential evapotranspiration over land, which leads to a drier terrestrial climate in the future.
- By the end of this century, the world's drylands can be 5.8x10⁶ km² (or 10 %) larger than in the 1961– 1990 climatology.

Past, present, future

- CESM-LME simulations for 850-2005 (Otto-Bliesner et al. 2015) and CESM-LE for 1920-2080 (Kay et al. 2014)
- Simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land use conditions, and orbital parameters, both together and individually.
- to place anthropogenic changes in the context of changes due to natural forcings during last millennium

Land SAT (°C)

Land P (%)

Land PET (%)

Land P/PET (%)

Land RH (%)

Land Rn - G (W/m2)

Conclusions (II)

- The aridity index averaged over land, becomes smaller (i.e., a drier terrestrial climate) by 0.34% for MWP versus LIA, 1.4% for PD versus LM, and 7.4% for F8.5 versus LM.
- The terrestrial aridity change in PD-LM is largely driven by greenhouse gas increases. Despite small effects on terrestrial-mean aridity, anthropogenic aerosols totally alter the attributions of aridity changes to meteorological variables by causing large negative anomalies in surface air temperature, available energy, and precipitation.
- This study indicates that geoengineering through solar radiation management could not address the problem of a drier climate caused by greenhouse gas increases.

• The PM algorithm was derived from the standard bulk formula for the sensible heat (SH) and latent heat (LH) fluxes along with the surface energy budget equation

$$SH = \rho_a c_p C_H (T_s - T_a) | u |$$

$$LH = \rho_a L_v C_H (q^* (T_s) - q^* (T_a) RH) | u | / (1 + r_s C_H | u |)$$

$$R_n - G = SH + LH$$

where T_s is the temperature at the surface interface, $LH = PET*L_v$, and q* is the saturated water vapor mixing ratio.

